Edge Partition of Toroidal Graphs into Forests in Linear Time
نویسندگان
چکیده
In this paper we give a linear algorithm to edge partition a toroidal graph, i.e., graph that can be embedded on the orientable surface of genus one without edge crossing, into three forests plus a set of at most three edges. For triangulated toroidal graphs, this algorithm gives a linear algorithm for finding three edge-disjoint spanning trees. This is in a certain way an extension of the well-known algorithm of Schnyder’s decomposition for planar graph.
منابع مشابه
Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling
In 1974, Kundu [4] has shown that triangulated (or maximal) simple toroidal graphs have three edge-disjoint spanning trees. We extend this result by showing that a triangulated graph on an orientable surface of genus g has at least three edge-disjoint spanning trees and so we can partition the edges of graphs of genus g into three forests plus a set of at most 6g − 3 edges.
متن کاملOn linear arboricity of cubic graphs
A linear forest is a graph in which each connected component is a chordless path. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. When each path has length at most k a linear forest is a linear k-forest and lak(G) will denote the minimum number of linear k-forests partitioning E(G). We cl...
متن کاملOn isomorphic linear partitions in cubic graphs
A linear forest is a graph that connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. It is well known that la(G) = 2 when G is a cubic graph and Wormald [17] conjectured that if |V (G)| ≡ 0 (mod 4), then it is always possible to find a linear partition...
متن کاملTriangle-Partitioning Edges of Planar Graphs, Toroidal Graphs and k-Planar Graphs
We show that there is a linear-time algorithm to partition the edges of a planar graph into triangles. We show that the problem is also polynomial for toroidal graphs but NP-complete for k-planar graphs, where k > 8.
متن کاملCovering planar graphs with degree bounded forests
We prove that every planar graphs has an edge partition into three forests, one having maximum degree 4. This answers a conjecture of Balogh et al. (J. Combin. Theory B. 94 (2005) 147-158).We also prove that every planar graphs with girth g ≥ 6 (resp. g ≥ 7) has an edge partition into two forests, one having maximum degree 4 (resp. 2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 22 شماره
صفحات -
تاریخ انتشار 2005